REFERENCES

(1) Teorell, T., Arch. Intern. Pharmacodyn., 57, 205 (1937).
(2) Dominguez, R., "Kinetics of Elimination, Absorption and Volume of Distribution in the Organism," Medical Physics II, Yearbook Publishers, Inc., Chicago, Ill., 1950, pp. 476-489.
(3) Dost, F. H., "Der Blutspiegel," Thieme, Leipzig, 1953.
(4) Nelson, E., J. Pharm. Sci., 50, 181(1961).
(5) Wagner, J. G., ibid., 50,359 (1961).
(6) Krüger-Thiemer, E., J. Theoret. Biol. 13, $212(1966)$.
(7) Way, E. L., and Adler, T. K., Bull. World Health Organ., 27, 359(1962)
(8) Wagner, J. G., J. Pharm. Sci., 52, 1097(1963),
(9) Martin, B. K., Brit. J. Pharmacol., 29, 181(1967).
(10) Heimlich, K., R., MacDonnell,' D. R., Flanagan, T. L., and O'Brien, P. D.,'J. Pharm. Sci., 50, $232(1961)$. (11) Beckett, A. H., and Wilkinson, G. R., J. Pharm. Pharmacol., 17, 107S(1965)
(12) Wilkinson, G. R., and Beckett, A. H., J. Pharmacol. Expll. Therap., 162, 139(1968).
(13) Jackson, A. S., "Analog Computation," McGrawHill, New York, N. Y., 1960.
(14) Wagner, J. G., and Nelson, E., J. Pharm. Sci., 52, 610(1963).
(15) Riegelman, S., Loo, J., and Rowland, M., ibid., 57, 117 (1968).
(16) Wilkinson, G. R., and Beckett, A. H., in press.
(17) Beckett, A. H., and Tucker, G. T., J. Pharm. Pharmacol., 18, 72S(1966).

OM
 Keyphrases

Ephedrines-pharmacokinetics
Pharmacokinetics-ephedrines,
absorption, metabolism, excretion
Models, single compartment-ephedrines, pharmacokinetics
Metabolites, ephedrines-formation, elimination

Stilbene Isothiocyanates as Potential Fluorescent Tagging Agents

By J. E. SINSHEIMER, J. T. STEWART*, and J. H. BURCKHALTER

Abstract

Two groups of stilbene isothiocyanate derivatives, α-phenylcinnamic acids and α phenylcinnamonitriles, have been synthesized. These compounds and their required intermediates were studied as to their structure-fuorescence relationships in an effort to develop a protein-tagging agent with blue fluorescence.

TThe fluorescent labeling of proteins as first developed by Coons et al. (1) and advanced by the introduction of fluorescent isothiocyanates by Burckhalter and co-workers (2,3) has had extensive application to biological problems especially for the identification of pathogenic organisms. The agents and techniques employed together with their applications have been reviewed by Nairn (4). In varying degrees, all the presently available reagents can be improved upon in regard to purity, expense, fluorescent intensity, and stability to UV irradiation. It would also be highly desirable to have agents with contrasting fluorescent colors. For example, a blue fluorescent label would be valuable to supplement the green of fluorescein and orange to red fluorescence of rhodamine derivatives.

[^0]Limited studies with blue fluorescent tagging agents have employed stilbene optical brightening agents and a coumarin isocyanate (5) as well as β-anthryl isocyanate (6) with limited success.

Peck and Creech (7) synthesized 4^{\prime}-isocyanato-4-dimethylaminostilbene for the purpose of combining it with proteins for UV analysis, but no mention was made of the possibility of utilizing the blue fluorescent properties of the stilbene and resulting protein conjugate. A blue fluorescent reagent, the disodium salt of 4^{\prime}-acetamido-4-isothiocyanatostilbene- $2,2^{\prime}$-disulfonic acid, has been described for the specific labeling of the outer components of the plasma membrane, but it has not been applied to antibody labeling (8).

Successful use of stilbene compounds as blue fluorescent optical brightening agents (9) of high stability encouraged the authors to seek improved fluorescent labeling agents among stilbene derivatives. The purpose of this investigation was to synthesize a stilbene isothiocyanate suitable for protein labeling as well as to study structurefluorescence relationships in a series of model stilbene compounds. More specifically a stilbene isothiocyanate protein-tagging agent was postu-
lated to meet the needs for an agent of good stability when exposed to UV radiation and for a blue fluorescent label as a compliment to the existing red and green agents. A contrasting color was desired for such applications as multiple antigen identification and as an additional method of overcoming background color interference.

DISCUSSION

Primarily two groups of stilbene isothiocyanate derivatives, α-phenylcinnamic acids and α-phenylcinnamonitriles, were synthesized and evaluated as labeling agents. The inclusion of the carboxylic group in the case of the former series of compounds was to promote water solubility of these compounds as their sodium salts for ultimate use as protein labels in aqueous media. Even more extensive studies were conducted with the α-phenylcinnamonitriles. The literature indicated (10, 11), including personal experiences (12, 13), that these compounds possessed good fluorescent intensity in solution by visual detection. An added reason for choosing the nitriles is that the synthetic route to these compounds produces primarily trans stilbenes; it is noteworthy that cis stilbene possesses only 1% of the fluorescence of its trans isomer (14).

The fluorescent-enhancing effect of various constituents was of interest. Such groups, however, could not be reactive with isothiocyanates and, therefore, studies were restricted to the effects of methoxy, dimethylamino, and quaternary nitrogen substituents. The isothiocyanates were also reacted with benzylamine to form thioureas corresponding to the thiourea linkage of a conjugated protein and to observe the effect of this structure on fluorescence.

A typical synthetic route to a quaternary salt of an α-phenylcinnamonitrile and conversion to the thiourea is shown in Scheme I.

The α-phenylcinnamic acids were synthesized via base-catalyzed condensations of substituted phenylacetic acids and benzaldehydes (15, 16). Starting materials required for the synthesis were either available commercially or could be readily
obtained in a few synthetic steps from commercial materials.

The isothiocyanates, thioureas, and new intermediates which were synthesized are shown together with their physical constants and fluorescence characteristics in Table I. This table also includes three stilbenes synthesized for purpose of comparison by methods analogous to known base condensation procedures (17-19).

Initially, measurement of the fluorescence of compounds with emphasis on isothiocyanate and thiourea compounds was by comparison to quinine sulfate by quinine reference unit (QRU) (20) with use of a filter fluorometer. Fluorescent values of aqueous solutions (ethanolic if required) were obtained when possible at a concentration where fluorescence was shown to be proportional to concentration. Compounds for which a linear concentration fluorescence relationship could not be obtained are indicated in Table I. For all compounds, fluorescence measurements were made as suggested by Hercules (21) at concentrations whose absorbance was less than 0.05 at the excitation wavelength. The fluorometer filters were selected for activation at $365 \mathrm{~m} \mu$ (Corning 7-37 filter) and for detection of emitted light at wavelengths greater than $400 \mathrm{~m} \mu$ (Kodak 2-A filter). These filters are similar to those commercially available in fluorescent microscopy and are suitable for the observation of blue fluorescence.
Structure-fluorescence relationships were obtained from the QRU data and comparisons of the data in Table I can be made to show the effect of different groups on the fluorescence of a molecule. In a limited study, α-phenylcinnamic acids were found to be less fluorescent than α-phenylcinnamonitriles, which possess a weaker fluorescence than stilbenes containing identical substitution. Methoxy and isothiocyanato substituents in α phenylcinnamonitriles result in increased fluorescent intensity. The increase depended on the fluorescent species involved. Thiourea derivatives formed from isothiocyanates of the α-phenylcinnamonitrile series possess a weaker fluorescent intensity than corresponding isothiocyanates. This is in contrast

Scheme I
Table I-Stilbene Derivatives

Compd.	R_{1}	R2	M.p., ${ }^{\circ} \mathrm{C}$. ${ }_{\text {of }}^{\substack{\text { of }}}$	$\begin{aligned} & \text { ethod } \\ & \text { Syn- } \\ & \text { thesis }{ }^{a} \end{aligned}$	Yield, \%	\qquad Caled Anal	Found	$\bar{\lambda}_{\text {maxx }} \mathrm{UV}=$	$\overbrace{\nu_{\text {max }}, \mathrm{cm}^{-1}} 1 \mathrm{C}$	Fluor Excit. $\lambda_{\text {max }}$.	ence Emiss. $\lambda_{\text {max }}$.	Relative FluoresQRU
	A. α-Phenylcinnamic Acids											
1	cis-4-Nitrophenyl	4-Dimethylaminophenyl	268-269		83	C, 65.38 H, 5.16	$\begin{gathered} 65.39 \\ 5.30 \end{gathered}$	320 (31,200)	$\begin{aligned} & 1.660(\mathrm{C}=\mathrm{O}) \\ & 1,600(\text { phenyl }) \end{aligned}$	-	-	-
2	cis-4-Aminophenyl	4-Dimethylaminophenyl	228-230	A	81	$\begin{gathered} \mathrm{N}, \\ \mathrm{C}, 97 \\ \mathrm{C}, \\ \mathrm{H}, \\ 6.32 .43 \end{gathered}$	$\begin{array}{r} 8.94 \\ 72.34 \\ \mathbf{6 . 4 9} \end{array}$	$\begin{aligned} & 360(\epsilon 6,690) \\ & 280(\epsilon \\ & \hline \epsilon, 080) \end{aligned}$	$\begin{aligned} & 1,320\left(\mathrm{NO}_{2}\right) \\ & 3,300(\mathrm{NH}) \\ & 1,650(\mathrm{C}=\mathrm{O}) \end{aligned}$	-	-	-
3	cis-4-Isothiocyanatophenyl	4-Dimethylaminophenyl	225-227	B	80	C, 66.64 H, 4.94	$\begin{array}{r} 66.73 \\ 5.05 \end{array}$	360 (33,000)	$\begin{aligned} & 1,600 \text { (pheyl) } \\ & 2.1,00(\mathrm{NCS}) \\ & 1,640(\mathrm{C}=0 \end{aligned}$	-	-	0.001
4	trans-4-Aminophenyl	4-Dimethylaminophenyl	225-226	$\mathrm{A}^{\text {b }}$	85		$\begin{gathered} 8.56 \\ 71.96 \\ 6.35 \\ 9.80 \end{gathered}$	$\begin{aligned} & 360(\epsilon 25,900) \\ & 240(\epsilon 10,600) \end{aligned}$	$\begin{aligned} & 1,575 \text { (phenyl) } \\ & 3,300(\mathrm{NH}) \\ & 1,670(\mathrm{CH}) \end{aligned}$	-	-	-
5	trans-4-Isothiocyanatophenyl	4-Dimethylaminophenyl	221-222	B	94	N, $\mathrm{C}, 66.64$ H, 4.94	9.80 66.73 4.90 8.58	353 (24, 100)		-	-	0.000°
6	cis.4-Methoxyphenyl	4-Aminophenyl	223-226	$\mathrm{A}^{\text {c }}$	17	N, 8.64	$\stackrel{8.58}{\sim}$	-	$1,575 \text { (phenyl) }$	-	-	-
7	cis-4-Methoxyphenyl	4-Isothiocyanatophenyl	144-146	B	50	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \mathrm{H}, 58 \\ & \mathrm{~N}, \\ & 4.21 \\ & 4.50 \end{aligned}$	$\begin{array}{r} 65.30 \\ 4.44 \\ 4.46 \end{array}$	333 (17,000)		-	-	0.000°
8	trans-4-Methoxyphenyl	4-Aminophenyl	205-208	$\mathrm{A}^{\text {c }}$	60	C, 71.36 H, 5.61	$\begin{array}{r} 71.21 \\ 5.61 \end{array}$	330 ($\mathbf{1 0 , 5 0 0)}$	$1,240($ arom. ether $)$ $1,650(\mathrm{C}=\mathrm{O})$ $1,575($ phenyl $)$	-	-	-
9	trans-4-Methoxyphenyl	4-Isothiocyanatophenyl	156-158	B	80	$\begin{aligned} & \mathbf{N}, 50 \\ & \mathbf{C}, 65 \\ & \mathbf{H}, 4.21 \\ & \mathbf{N}, \\ & \hline \end{aligned}$	$\begin{array}{r} 5.30 \\ 6.77 \\ 4.29 \\ 4.69 \end{array}$	328 (619.100)	1,250 (arom. ether) $2,100(\mathrm{NCS})$ $1,65(\mathrm{C=}=0$ $1,600($ phenyl $)$	-	-	0.000
10	cis-4-Methoxyphenyl	3-Nitrophenyl	199-202	${ }^{c}$	8.4	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \mathrm{~N}, \\ & \mathrm{~N}, \\ & 4.38 \\ & 4.68 \end{aligned}$	$\begin{array}{r} 64.28 \\ 4.48 \\ 4.71 \end{array}$	$305(625,500)$	$\begin{aligned} & 1,275 \text { (arom. ether) } \\ & 1,700 \text { (C=O) } \\ & 1,3400(\mathrm{NO}) \\ & 1,600(\text { phenyl }) \end{aligned}$	-	-	-
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	cis-4-Methoxyphenyl cis-4-Methoxyphenyl	3-Aminophenyl ${ }_{\text {- }}^{\text {3-1sothiocyanatopheny }}$	$\begin{gathered} 58-60(\mathrm{dec} .) \\ 135-138 \end{gathered}$	$\underset{B}{A}$	$\begin{aligned} & 51 \\ & 96 \end{aligned}$	$\begin{aligned} & \mathrm{C}, \overline{65.58} \\ & \begin{array}{l} 4.21 \\ \mathrm{~N}, \\ \mathrm{~N}, \\ 4.50 \end{array} \end{aligned}$	$\begin{gathered} 69 \\ 65.52 \\ 4.33 \\ 4.50 \end{gathered}$	218 (\mathbf{F}_{33}, 200)	2,100 (NCS) 1,700 (C=O) 1,600; 1,520 (phenyl)	二	二	0.0004^{t}
13	trans-4-Methoxyphenyl	3-Nitrophenyl	174-176	c	55	$\begin{array}{r} \mathrm{C}, \\ \mathrm{H}, \quad 4.21 \\ \mathrm{~N}, \\ 4.38 \end{array}$	$\begin{gathered} 64.31 \\ 4.42 \\ 4.70 \end{gathered}$	$\begin{aligned} & 225(\epsilon 21,000) \\ & 260(\epsilon 19,700) \end{aligned}$	$\begin{aligned} & 1,250 \text { (arom. ether) } \\ & 1,650 \text { (C=O) } \\ & 1,600 \text { (phenyl) } \\ & 1,520 ; \end{aligned}$	-	-	-
14	trans-4-Methoxyphenyl	3-Aminophenyl	222-224	A	70	C, 71.36 H, 5.61	$\begin{array}{r} 70.66 \\ 5.70 \\ 5 \end{array}$	$\begin{aligned} & 225(\boldsymbol{2 1 , 8 0 0)} \\ & 280\left(\begin{array}{c} (13,100) \end{array}\right. \end{aligned}$	$1,340\left(\mathrm{NO}_{2}\right)$ $1.660(\mathrm{C=}=\mathbf{O})$ $1.560($ phenyl $)$	-	-	-
15	trans-4-Methoxyphenyl	3-Isothiocyanatophenyl	148-151	B	90	$\begin{array}{lr} \mathrm{N}, & 5.20 \\ \mathrm{C}, & 65.58 \\ \mathrm{H}, & 4.21 \\ \mathrm{~N}, & 4.50 \end{array}$	$\begin{gathered} 55.66 \\ 6.60 \\ 4.34 \\ 4.63 \end{gathered}$	221 (6 22,300)	1,225 (arom. ether) $2,100(\mathrm{NCSS})$ $1,660(\mathrm{C}=\mathrm{O})$ 1,$560 ;$ 1,500 (phenyl) 1,250 (arom. ether)	-	-	$0.0003{ }^{\text {a }}$

Compd.	R_{1}	R_{2}	M.p., ${ }^{\circ} \mathrm{C}$.	Method of Synthesis	$\begin{gathered} \text { Yield, } \\ \% \end{gathered}$	Calcd.	Found			Fluore Excit. $\lambda_{\text {max }}$	cence Emiss. $\lambda_{\text {max. }}$	Relative FluoresQRU ${ }^{r}$
33	4-Butoxyphenyl	4-Trimethylamamoniumphenyl iodide	155-157	C	80	$\begin{aligned} & \mathrm{C}, 57.15 \\ & \mathrm{H}, \quad 5.89 \end{aligned}$	$\begin{array}{r} 57.26 \\ 5.82 \end{array}$	330 (e26,500)	$\begin{aligned} & 2,275(\mathrm{CN}) \\ & 1,6400 \end{aligned}$	350	440	0.070
34	3,4-Dimethoxyphenyl	4-Dimethylaminophenyl	107-109	1	90		$\begin{array}{r} 6.10 \\ 73.94 \\ 6.53 \\ 0.17 \end{array}$	$\begin{aligned} & 380 \\ & 250 \\ & 250 \\ & (\epsilon 17,000) \\ & (\epsilon 17,100) \end{aligned}$	$\begin{aligned} & 1,600(\text { Phenyl) } \\ & \mathbf{1}_{2}^{200}(\mathrm{CN}) \\ & 1,600(\text { phenyl } \end{aligned}$	280	450	0.011
35	3,4-Dimethoxyphenyl	phenyl iodide 4-Trimethylammonium- phenyl iodide	173-175	C	71		9.17 53.30 5.23 6.21		$\begin{aligned} & 2,250(\mathrm{CN}) \\ & 1,660 ; \end{aligned}$	365	490	1.750
36	3,4,5-Trimethoxyphenyl	4-Dimethylaminophenyl	169-170		88	N, 6.22 C, 70.99 H, 6.55	$\begin{array}{r}6.21 \\ 70.89 \\ 6.48 \\ \hline\end{array}$	$\begin{aligned} & 255(\epsilon 7,670) \\ & 380(\in \mathbb{7 1}, 200) \\ & 255(\epsilon 15,600) \end{aligned}$	$\begin{aligned} & 1,620 \text { (phenyl) } \\ & 21,200(\mathrm{CN}) \\ & 1,600 \text { (phenyl) } \end{aligned}$	365	470	0.006^{t}
37	3,4,5-Trimethoxyphenyl	4-Trimethylammoniumphenyl iodide	167-169	C	71		$\begin{array}{r} 8.34 \\ 52.29 \\ 5.36 \\ 5.84 \end{array}$	$\begin{aligned} & 340(\epsilon 18,000) \\ & 260(\epsilon 13,000) \end{aligned}$	$\begin{aligned} & 1,250 \text { (arom. ether) } \\ & 2,275 \text { (CN) } \\ & 1,650 ; \text { (phenyl) } \\ & 1,975 \text { (arampether) } \end{aligned}$	350	500	0.840
38	4-Methoxyphenyl	3-Trimethylammoniumphenyl iodide	164-168	C ${ }^{\text {d }}$	48	$\begin{aligned} & \mathbf{C}, 54.30 \\ & \mathrm{H}, \quad 5.04 \\ & \mathrm{~N}, \quad 6.67 \end{aligned}$	$\begin{array}{r} 54.36 \\ 5.11 \\ 6.62 \end{array}$	330 (15 , 200)	$\begin{aligned} & 2,200(\mathrm{CN}) \\ & 1,590 ; \end{aligned}$ 1,500 (phenyl)	350	440	0.200
39	4-Methoxyphenyl	4-Trimethylammoniumphenyl iodide	173-175	C ${ }^{\text {i }}$	60	$\begin{gathered} \mathrm{C}, \\ \mathrm{H}, \\ \mathrm{H}, 30 \\ \mathrm{~N}, \\ 5.04 \\ 6.67 \end{gathered}$	$\begin{array}{r} 54.46 \\ 4.99 \\ 6.71 \end{array}$	$\begin{aligned} & 320(\epsilon 14,400) \\ & 230(\epsilon 27,600) \end{aligned}$	$\begin{aligned} & 2,200 \text { (CN) } \\ & 1,590 ; \text { (phenyl) } \\ & 1,5005 \text { (arom. ether) } \end{aligned}$	350	425	0.150
40	3-Nitro-4-methoxyphenyl	4-Dimethylaminophenyl	211-212	k, ${ }^{\text {c }}$,	92	$\begin{aligned} & \mathrm{C}, 66.86 \\ & \mathrm{H}, 5.30 \\ & \mathrm{~N}, 13.00 \end{aligned}$	$\begin{array}{r} 67.10 \\ 5.41 \\ 12.90 \end{array}$	$\begin{aligned} & 395(\epsilon 26,100) \\ & 255(\epsilon 15,100) \end{aligned}$	$\begin{aligned} & 2,200(\mathrm{CN}) \\ & 1,600 ; \\ & 1,560{ }^{2} \text { (phenyl) } \\ & 1,520 ; \end{aligned}$	-	-	-
41	$\underset{\text { phenyl }}{\text { 3-Amino-4-methox } y-~}$	4-Dimethylaminophenyl	177-179	A	88	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \mathrm{~N}, 6.69 \\ & \mathrm{~N}, 14.32 \end{aligned}$	$\begin{array}{r} 73.63 \\ 6.48 \\ 14.40 \end{array}$	$\begin{aligned} & 375(\underset{250}{ }(\underset{22}{ }(28,000) \end{aligned}$	$1,340\left(\mathrm{NO}_{2}\right)$ $3,500(\mathrm{NH})$ $2,200(\mathrm{CN})$ 1,$590 ;$	365	440	0.007 ${ }^{\text {c }}$
42	3-Isothiocyanato-4methoxyphenyl	4-Dimethylaminophenyl	139-141	B	88	$\begin{aligned} & \mathbf{C}, 68.03 \\ & \mathbf{H}, \begin{array}{r} 5.11 \\ \mathrm{~N}, 12.53 \end{array} \end{aligned}$	$\begin{gathered} 68.00 \\ 5.28 \\ 12.41 \end{gathered}$	$\begin{aligned} & 385 \\ & 255 \\ & \hline(\epsilon 25,600) \\ & (\epsilon 27,300) \end{aligned}$	$\begin{aligned} & 1,275 \text { (phenyl) } \\ & 2,200 \text { (} \mathrm{NCS} \text {) } \\ & 1,600 \end{aligned}$	420	475	0.013^{t}
43	3-Isothiocyanato-4methoxyphenyl	4-Trimethylammoniumphenyl methosulfate	192-196	C	90	-	\square	$\begin{aligned} & 275(\epsilon 19,100) \\ & 215(\leqslant 39 ; 800) \end{aligned}$		350	450	0.300
44	3-(3-Benzylthioureido)-4-methoxyphenyl]	4-Trimethylammoniumphenyl methosulfate	168-170	D	80	$\begin{aligned} & \mathrm{C}, 59.13 \\ & \mathrm{H}_{1}, \\ & \mathrm{~N}, \\ & \mathrm{~N}, 67 \end{aligned}$	$\begin{array}{r} 59.03 \\ 5.61 \\ 9.75 \end{array}$	$250(625,100)$	$\begin{aligned} & 1,200 \text { (arom) etner) } \\ & 1,600 \text { (phenyl) } \\ & 1,240 \text { (arom ether) } \end{aligned}$	365	460	0.020
45	4-Methoxyphenyl	nitrophenyl 2-Dimethylamino-5-	174-175	m, n,	94	$\begin{aligned} & \mathrm{C}, 66.86 \\ & \mathrm{H}, 5.30 \\ & \mathrm{~N}, 13.00 \end{aligned}$	$\begin{array}{r} 66.92 \\ 5.31 \\ 12.85 \end{array}$	$\begin{aligned} & 370(615,200) \\ & 325(\underset{(6,900)}{ } \end{aligned}$	$\begin{aligned} & 2,300 \text { (CN) } \\ & 1,650 \text { (phenyl) } \\ & 1,520 ; \end{aligned}$	-	-	-
46	4-Methoxyphenyl	2-Dimethylamino-5aminophenyl	109-111	A	83	$\begin{aligned} & \mathrm{C}, 73.69 \\ & \mathrm{H}, \quad 6.53 \\ & \mathrm{~N}, 14.32 \end{aligned}$	$\begin{array}{r} \begin{array}{c} 3.73 \\ 6.52 \\ 14.30 \end{array} \end{array}$	$\begin{aligned} & 325(\epsilon 14,200) \\ & 240(\epsilon 13,600) \end{aligned}$	$\begin{aligned} & 1,350\left(\mathrm{NO}_{2}\right) \\ & 2,250(\mathrm{CN}) \\ & 1,515 \text { (phenyl) } \\ & 1,260 \text { (arom. ether) } \end{aligned}$	-	-	-
47	4-Methoxyphenyl	2-Dimethylamino-5isothiocyanatophenyl	95-97	B	87	$\begin{aligned} & \mathrm{C}, 68.03 \\ & \mathrm{H}, \\ & \mathrm{~N}, 11 \\ & \mathrm{~N}, 12.53 \end{aligned}$	$\begin{array}{r} 68.17 \\ 4.96 \\ 12.49 \end{array}$	$\begin{aligned} & 305(\underset{235}{(\epsilon 20,400)} \end{aligned}$	2,250 (CN) 2,150 (NCS) 1.650 (phenyl)	335	550	0.013

48	4-Methoxyphenyl	[2-Dimethylamino-3 (3-benzylthioureido)phenyl]	178-181	D	80	$\begin{gathered} \mathrm{C}, 70.56 \\ \mathrm{H}, 5.92 \\ \mathrm{~N}, 12.66 \end{gathered}$	$\begin{array}{r} 70.36 \\ 5.79 \\ 12.56 \end{array}$	$\begin{aligned} & 285(\epsilon 21,800) \\ & 240(\epsilon 25,400) \end{aligned}$	$\begin{aligned} & 2,250(\mathrm{CN}) \\ & 1,575 ; \\ & 1,515 \text { (phenyl) } \\ & 1,260 \text { (arom. ether) } \end{aligned}$	335	540	0.017
49	4-Aminophenyl	4-Dimethylaminophenyl	194-196	$\mathrm{A}^{\text {b }}$	56	C, 77.54	77.55 6.48	$\begin{aligned} & 380(\epsilon 25,200) \\ & 250(\epsilon 17,500) \end{aligned}$	$\begin{aligned} & 3,300(\mathrm{NH}) \\ & 2,200(\mathrm{CN}) \end{aligned}$	420	480	-
						N, 15.96	16.01		1,550 (phenyl)		460	0.008
50	4-1sothiocyanatophenyl	4-Dimethylaminophenyl	129-131	B	80	C, H, N, N, 13.75	$\begin{array}{r} 70.83 \\ 5.03 \\ 13.72 \end{array}$	$292(\epsilon 17,900)$	$\begin{aligned} & 2,250 \text { (CN) } \\ & 2,150 \text { (NCS) } \\ & 1,640 ; \end{aligned}$	365	460	0.008
51	```[4-(3-Benzylthioureido)- phenyl]```	4-Dimethylaminophenyl	190-192	D	60		$\begin{array}{r} 72.71 \\ 5.91 \\ 13.60 \end{array}$	$\begin{aligned} & 385(\epsilon 27,500) \\ & 250(\epsilon 24,000) \end{aligned}$	$\begin{aligned} & 1,600 \text { (phenyl) } \\ & 2,250 \text { (CN) } \\ & 1,640 ; \\ & 1,600 \text { (phenyl) } \end{aligned}$	390	460	0.005
				S		$\mathrm{CH}=\mathrm{CH}$						
52	4-Dimethylaminophenyl	4-Isothiocyanatophenyl	214-216	$\mathrm{B}^{\boldsymbol{o}, \boldsymbol{p}}$	90	$\mathrm{C}, 72.82$	$\begin{array}{r} 72.59 \\ 5 \end{array}$	$375(c 40,600)$	$2,150 \text { (NCS) }$	410	470	0.040
	- Dimethylaminophent					$\begin{aligned} & \mathrm{H}, \quad 5.75 \\ & \mathrm{~N}, \quad 9.99 \end{aligned}$	$\begin{array}{r} 5.70 \\ 10.09 \end{array}$	285 (e 14,500)	1,640; ${ }^{\text {1,550 }}$ (phenyl)			
53	4-Dimethylaminophenyl	pheny! 4-(3-Benzylthioureido)-	193-194	D	74	C, 74.38	74.51 6.50	355 (630,900$)$	$\begin{aligned} & 1,640 ; \\ & 1,550 \\ & \text { (phenyl }) \end{aligned}$	390	450	0.100
						N', 10.84	10.78					
${ }^{a}$ Subscripts are for general literature procedures and key intermediates. Letters refer to the authors' experimental procedures. ${ }^{b}$ The $c i s$ acid Pfeiffer (23) with the same general procedure used by Pfeiffer for his preparation of the irans acid. ${ }^{c}$ See Ref. 15 for general synthetic procedure. ${ }^{d}$ See to general procedure described in Ref. 25. ${ }^{\circ}$ See Ref. 11. ${ }^{h}$ Synthesized from Compd. 28 by demethylation with hydrobromic-acetic acids. ${ }^{i}$ Sy a linear concentration-fuorescence relationship could not be obtained. tive whose structure was supported by analytical data. ${ }^{r}$ Quinine reference unit, see Ref. $20{ }^{\circ}{ }^{s}$ No fluorescence even at a concentration with an abso												

Table II-Fluorescence of Selected Compounds Relative to Fluorescein Isothiocyanate

Compd.	Relative QRU ${ }^{a}$	Fluorescein Isothiocyanate Excitation at			
		$\begin{gathered} 365 \mathrm{~m} \mu \\ \text { (with } \\ \text { Visual } \\ \text { Detection } \end{gathered}$		$\operatorname{mal}_{\boldsymbol{m a l}_{\mathrm{n}} \mu \mathrm{Filter}}^{\text {precent }}$	
Fluorescein					
isothiocyanate	1.000	1.000	1.000	1.000	
Quinine sulfate	2.100	0.240	0.490	0.0150	
43	0.640	0.060	0.067	0.0037	
44	0.040	0.003	0.002	0.0003	
16	0.150	0.006	0.029	0.0004	
17	0.040	0.005	0.017	0.0003	
52	0.090	0.006	0.0047	0.0004	
53	0.220	0.011	0.022	0.0007	
39	0.320	0.014	0.049	0.0009	
35	3.720	0.540	0.354	0.0350	
37	1.800	0.600	0.417	0.0391	
33	0.150	0.012	0.0306	0.0008	
31	0.130	0.013	0.023	0.0009	
20	0.090	0.004	0.063	0.0003	

a Quinine reference unit, see Ref. 20.
to an example studied in the stilbene series in which the thiourea is more fluorescent than the isothiocyanate.

The intense fluorescence of the quaternary salts of the α-phenylcinnamonitriles is of special interest. It was shown that they were more fluorescent in absolute ethanol than water.

The three isothiocyanates, Compounds 16,43 , and 52 , that possessed QRU greater than 0.04 were tested in the fluorescent antibody procedure. ${ }^{1}$ A QRU of 0.04 represents an intensity of a tenth that of fluorescein isothiocyanate when it is excited at $365 \mathrm{~m} \mu$. Conjugation of isothiocyanate 43 to rabbit antiserum proceeded as established for the commercial isothiocyanates (4). The water-insoluble Compounds 16 and 52 were dissolved in a small amount of acetone and then added to the serum. Although different excitation and barrier filter combinations available in the microscope were employed, no usable fluorescence was observed. ${ }^{1}$

An important factor in reference to these results is that the antibody-labeling technique involves visual detection of emitted fluorescence and that the compounds under study fluoresce in the blue region of the spectrum where the sensitivity of the human eye is relatively poor. As previously described (20), a fluorometer employing a Kodak wratten filter No. 106 with a 1P28 phototube will approach the spectral response of the eye. Emission spectra of the isothiocyanates that had been tested in the fluorescent antibody procedure, along with their thiourea derivatives and other compounds of interest from the synthetic studies, were determined with an Aminco-Bowman spectrophotofluorometer with the 106 filter, 1P28 phototube system and are listed in Table II. Solvents, pH , and activation wavelength were selected to yield the maximum fluorescence for each compound studied.

The relative fluorescence data in Table II indicate why Compounds 16,43 , and 52 , that appeared promising in the QRU procedure, did not give

[^1]satisfactory results in the fluorescent antibody technique. The relative fluorescence in reference to fluorescein isothiocyanate activated at $365 \mathrm{~m} \mu$ and detected by a system comparable to the spectral response of the eye was only one-tenth of corresponding relative values obtained by the QRU procedure. Each of these blue fluorescent compounds was reduced even further to a small fraction of the fluorescence of fluorescein isothiocyanate activated at its maximum of $490 \mathrm{~m} \mu$. The comparison on this latter basis is also listed in Table II.

Thus, while the objective of obtaining a contrasting blue fluorescence was met, the intensity of the compounds was not great enough to overcome the disadvantage of emission in a region where the sensitivity of the eye is limited. This is particularly unfortunate because these compounds are excited by the intense mercury lines near $365 \mathrm{~m} \mu$ and are reasonably stable to ultraviolet irradiation, advantages not found in the tagging agents presently employed.

EXPERIMENTAL ${ }^{2}$

Reduction of Nitro to Amino Compounds (Procedure A)-A suspension or solution of a nitro compound and 100 mg . of Adams' catalyst/ 10 g . of compound in absolute ethanol was allowed to consume a calculated amount of hydrogen in a Parr hydrogenator. The catalyst was removed by filtration through diatomaceous earth ${ }^{3}$ and the ethanol was evaporated. The residue can be recrystallized from aqueous ethanol or another appropriate solvent.

Formation of an Isothiocyanate from an Amino Compound (Procedure B)-An acetone solution of the amino compound and an excess of thiophosgene (hood) was refluxed on a steam bath for 2 hr . Removal under reduced pressure at room temperature of the unreacted thiophosgene (hood) and acetone leaves a material, which can be recrystallized from glacial or aqueous acetic acid.

Quaternary Salt Formation (Procedure C)A suspension of 0.01 mole of amino compound, 0.03 mole of dimethyl sulfate, 5 ml . of water, and 5 g . of potassium carbonate in 60 ml . of acetone was heated on a steam bath for 2 hr . Filtration of the hot suspension followed by air evaporation of the filtrate (hood) gave the crude methosulfate salt. Addition of potassium iodide to an aqueous solution of the methosulfate formed the iodide which was collected by filtration and was dried. The methosulfate salts were recrystallized from absolute ethanol and the iodide salts were recrystallized from absolute ethanol and/or water.

Thiourea Formation (Procedure D)-An equimolar solution of an isothiocyanate compound and amine in absolute ethanol was heated in a water bath for $15-30 \mathrm{~min}$. When the reaction mixture

[^2]cooled to room temperature, the precipitate was collected and dried. Recrystallizations from absolute ethanol gave a pure thiourea.

Quinine Reference Unit Procedure-Quinine reference units (QRU) (20) were obtained on an Aminco fluoro-microphotometer. The samples were excited by means of a G.E. No. F4T4/B1 4 w. UV lamp and a Corning 7-37 filter. The detection system consisted of a Kodak wratten 2-A filter and a RCA 931-A phototube.

One milliliter of stock solution of quinine sulfate ($99.3 \times 10^{-6} \mathrm{~g} . / \mathrm{ml} .0 .1 \mathrm{NH}_{2} \mathrm{SO}_{4}$) was diluted to 100 ml . with 0.1 N sulfuric acid, and a reading was obtained on the fluorometer.

Solutions of the fluorescent compounds (50 to $100 \times 10^{-6} \mathrm{~g} . / \mathrm{ml}$. in their appropriate solvents) were diluted and readings of the dilutions were taken until a linear relationship was observed between fluorescence and concentration.

Values of dilutions equivalent to absorbance units of no greater than 0.05 at the exciting wavelength of $365 \mathrm{~m} \mu$ were employed to calculate the QRU when a linear relationship of fluorescence to concentration was not observed.

REFERENCES

(1) Coons, A. H., Creech, H. I., Jones, R. N., and Berliner, E., J. Im munol., 45, 159 (1942).
(2) Burckhalter, J. H., and Seiwald, R. J., U. S. pat. 2,937,186 (1960); through Chem. Abstr., 54, 19718(1960).
(3) Riggs, J. L.. Seiwald, R. J., Burckhalter, J. H., Downs, C. M., and Metcalf, T. G., Am. J. Palhol., 34, 1081 (1958).
(4) Nairn, R. C., "Fluorescent Protein Tracing," 2nd ed., Williams and Wilkins, Baltimore, Md., 1964.
(5) Chadwick, C. S., McEntegart, M. G., and Nairn, R. C..Immunology, 1,317 (1958).
(6) Creech, H. J., and Jones, R. N., J. Am. Chem. Soc., 63, $1661(1941)$.
(7) Peck, R. M., and Creech, H. J., ibid., 74, 468(1952).
(8) Maddy, A.' H., Biochim. Biophys. Acla, 88, 390 (1964).
(9) Adams, D. A. W. in "Recent Progress in Chemistry and Synthetic Colouring Matters and Related Fields," Gore, T. S., Joshi, B. S., Sunthankar, S. V., and Tilak, B. D., Eds., Academic Press, New York, N. Y., 1962, p. 615 .
(10) Kauffic Press, New York, N. Y., 1962, p. 615 .
(11)
(11) Kauffinann, H., ibid., 50, 515, 1614(1917).
(12) Nerurkar, J. J., Ph.D. thesis, University of Kansas, Lawrence, Kan., 1959.
(13) Burckhaiter, J. H., Sam, J., and Hall, L. A. R., J A m. Chem. Soc., 81,394 (1959).
(14) Lewis, G. N., Magel, T. T.. and Lipkin, D., ibid., 62, 2973(1940).
(15) Ketcham, R., and Jambotkar, D., J. (1.g. Chem., 28, 034(1963).
(16) Johnson, J. R. "Organic Reactions," Vol. I, Wiley, New York, N. Y., 1942, p. 210.
(17) Preiffer, P., and Sergiewskaja, S., Ber., 44, 1107 (1911).
(18) Singh, R. N., Chand, V., and Choger, T. N., Agra. Univ. J. Res-Science, 1, 153(1952); through Chem. Abstr., 48,2654(1954).
(19) "Chemistry of Carbon Compounds," Vol. III. pt. B, Rodd, E. H., Ed., Elsevier, Amsterdam, 1956, p. 1138.
(20) Woods, L., L., and Sapp. J., J. Chem. Eng. Duta, 8, 235(1963).
(21) Hercules, D. L., Anal. Chem., 38, 29A(1966) .
(22) Sinsheimer, J. E., Stewart, J. T., and Burckhalter,
J. H., J. Pharm. Sci., 57, 333 (1968)
(23) Pfeiffer, P., Ann. Chem., 465, 38(1926).
(24) Schnell, A., Ber., 16, $1381(1884)$.
(25) "Organic Syntheses," Coll. Vol. III, Wiley, New York, N. Y., 1955, p. 715.
(26) Miyano, M., Muraki, S. Kusunoki, T., Morita, T., and Matsui, M., Nippon Nogeikagaku Kaishi, 34 (8), 683 and Matsui, M., Nippon Nogeikagaku Kaishi,
(1960); through Chem. Abstr., 59, 13929c(1963).
(27) Niederl, J. B., and Ziering, A., J. Am. Chem. Soc., $64,885(1942)$.
(28) Quelet, R., and Germain, Y., Compl. Rend., 202 1442(1936).
(29) Bersch, H. W., Arch. Pharm., 277, 271(1939).
(30) Erdmamn, H., Ann. Chem., 272, 153(1893).
(31) Cohn, P., and Blau, A., Monatsch. Chem., 25, 371 (1904).
(32) Pfeiffer, P., Ber., 48, 1796(1915).
CM Keyphrases
Quinine reference units-fluorescence determination
Fluorometry-analysis

Dissolution Behavior and Solubility of Anhydrous and Trihydrate Forms of Ampicillin

By JOHN W. POOLE and CHANDER KANTA BAHAL

Abstract

Anhydrous ampicillin and ampicillin trihydrate were compared for solubility and relative rates of dissolution in distilled water at temperatures ranging from 7.5 to 50^{6}. Differences were noted in the physical-chemical properties of these two forms of ampicillin. The thermodynamic properties of these compounds have been experimentally evaluated. The properties noted for the two forms of the antibiotic are consistent with the observed differences in the biological utilization of the two forms after oral administration to laboratory animals and human subjects.

Many organic medicinal compounds are capable of existing in more than one crystalline form having different physical-chemical properties. The resulting variation in the thermodynamic properties associated with differences in crystal form may be of considerable pharmaceutical importance as pointed out previously by Higuchi (1). The present report is concerned with studies conducted to determine the differences in some of the physical-chemical properties of two forms of ampicillin, a semisynthetic penicillin. Specifically, the solubilities and relative rates of dissolution in distilled water of anhydrous ampicillin and ampicillin trihydrate were determined and the thermodynamic properties of these crystal forms were experimentally evaluated.

Most of the past work reported on the physicalchemical properties of crystalline hydrates has been concerned with inorganic compounds. The studies of Taylor and Henderson (2) on the various hydrates of calcium nitrate and of Hill (3) on calcium sulfate are examples of such studies. More recently several investigations concerned with studies of organic molecules in the anhydrous

[^3]and hydrated forms have been reported. An anhydrous form of phenobarbital and two of its hydrates were examined by Eriksson (4) for apparent solubility in water as a function of time. The relative dissolution rates of solvated and nonsolvated crystal forms of several types of compounds of pharmaceutical interest, including steroids and xanthines were reported by Shefter and Higuchi (5). These workers also determined the thermodynamic properties of several of these crystal systems.

EXPERIMENTAL

Apparatus-A constant-temperature water bath equipped with Unitherm Haake constant-temperature circulator ${ }^{1}$ and a rotating-bottle apparatus, ${ }^{2}$ Swinney hypodermic adaptor, ${ }^{3}$ Millipore filters ${ }^{3}$ (pore size 0.45μ), amber bottles, 120 ml . with polyseal caps. ${ }^{4}$

Compounds-In all the experiments anhydrous ampicillin, (Wyeth Laboratories batch C-10575, m.p. 203-204 ${ }^{\circ}$) was used. The trihydrate form of ampicillin was prepared from the anhydrous form by the method of Austin et al. (6). IR spectra and differential thermal analysis curves were obtained for this material.

Procedure-An excess of drug, 2 g ., in the appropriate form was added to 100 ml . of distilled water previously equilibrated to the desired temperature.

[^4]
[^0]: Received June 10, 1968, from the College of Pharmacy, University of Michigan, Ann Arbor, MI 48104
 Accepted for publication August $8,1968$.
 Abstracted in part from a dissertation submitted by J. T. Stewart in partial fulfillment of the Doctor of Philosophy degree requirements.

 This investigation was supported in part by research grant AI 05817 and training grant GM 1367, National Institutes of Health, U. S. Public Health Service, Bethesda, Md.

 * Fellow of the American Foundation for Pharmaceutical Education: holder of the $1965-67$ H. A. B. Dunning Memorial Fellowship. Present address: School of Pharmacy, University of Georgia, Athens, Ga.

[^1]: ${ }^{1}$ We are indebted to Dr. W. C. Eveland and his staff in the University of Michigan School of Public Health for evaluating these compounds.

[^2]: ${ }^{2}$ Catalytic hydrogenation reactions were carried out at room temperature and 60 p.s.i. by means of a Parr hydrogenator. Melting points were taken in open capillary tubes with a Mel-Temp electric block; they are corrected. UV spectra were determined in ethanol solution by means of a Beckman model DB spectrophotometer. IR spectra were obtained with either a Perkin-Elmer Infracord or model 337 grating spectrophotometer. Fluorescence spectra were determined with an Aminco Bowman spect rophotohuorometer model No. 4-8106 equipped with a X-Y recorder; spectra were ung Microanalytical Laboratory, Ann Arbor, Mich.
 © Celite 545, Johns-Manville Co., New York, N. Y.

[^3]: Received June 26, 1968, from Pharmacy Reasearch \& Development Division, Wyeth Laboratories, Philadelphia, PA 19101

 Accepted for publication August 7, 1968.
 Presented to Basic Pharmaceutics Section, APhA Academy of Pharmaceutical Sciences, Miami Beach meeting, May 1968.

[^4]: ${ }^{1}$ Brinkmann Instruments, Westbury, N. Y.
 ${ }^{2}$ E. D. Menold Sheet Co., Lester, Pa
 ${ }^{3}$ Millipore Corp., Bedford, Mass.

 - Erno Products, Philadelphia, Pa.

